
Efficient Algorithms for Polynomial Interpolation 
and Numerical Differentiation* 

By Fred T. Krogh 

Abstract. Algorithms based on Newton's interpolation formula are given for: simple 
polynomial interpolation, polynomial interpolation with derivatives supplied at some 
of the data points, interpolation with piecewise polynomials having a continuous first 
derivative, and numerical differentiation. These algorithms have all the advantages of 
the corresponding algorithms based on Aitken-Neville interpolation, and are more 
efficient. 

Introduction. The polynomial of nth degree passing through the points (xi, f(xi)), 
i = 0,1, * *, n, is given by the Newton interpolation formula 

(1) Pn(X) = f [o] + wlf[xo, Xi] + w2f[xo, X1, X2] + 

. . . + rnf [xo, Xii , * Xn] 

where 7ri = (x - xo) (x - xi) * (x - xi-) andf[xo, xi, *, xi] is the ith divided 
difference of f defined by** 

f[Xk] = f (Xk) 

f IX1 X1 =f[XO] 
- fJ[Xkl 

(2) f[xo, Xk] XO - k 

f[Xo X1, , XI, Xi, - f[xki ? 1, Xi] -Af2xonxl? * Xi-,xk] i > 1. 

Although Newton's interpolation formula is well known, it is not widely used due 
to the popular misconception that it is inefficient. Usually recommended for 
interpolation are the methods of Aitken [1], Neville [21, or Lagrange's formula. 
Algorithms which make use of derivative values for interpolation are given in 
[2], [3], and [4]; and algorithms for numerical differentiation are given in [3], [5], 
and [6]. In all cases the algorithms given here are more efficient than other algo- 
rithms in the literature. 

Simple Interpolation. The algorithms given below follow naturally from Eqs. 
(1) and (2). In these algorithms 
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* This work was done while the author was employed by TRW Systems. 
** The recursion used in this definition gives the same results as obtained with the more usual 

f1xo, xi, *-., Xk] = {fIxo, * -, xk - f[x , *--, xk]}/(xo - Xk). It has the minor advantages of 
letting one save the divided differences used in Eq. (1) with no extra storage requirement, and of 
giving indexes which do not decrease in the implementation of the algorithms (a convenience with 
some FORTRAN compilers). 
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Vik= f (xk) i = O 

=f [XO2 Xl, .. * *,al, Xk]I i-= 1, 2, .. *I* k,j 

(3) )k X Xk, 

o= 1, 

Irk = (X - Xo)(X - X1) (X -k-1) . 

In the algorithms a statement of the form x = f(x, y, * * * ) means compute f using 
the numbers in locations x, y, ***, and store the result in location x. 

Algorithm I. 

T0 = 1 

V0, 0 = f (xo) 

Po = V0,0 

Vo,k = f (Xk) 

Vi~ - Vi,k i01**l- Vi+lk 
Xi 

- - Xk 
i 01 11 * * 

k= 1,2,*,n. 

Wk-1 = X Xk-1 X 

Irk = Wk-1rk-1 

pk (X) = pk-1 (X) + IrkVk,k, J 
Note that in a computer program the cox's, ir's, and p's can be scalars since in each 
case they are only used immediately after being computed, and similarly the array 
V can be replaced by a vector c with c, = Vu,. 

An important feature of the Newton (or Aitken-Neville) algorithm is that one 
can select the value of n based on the convergence of the sequence pk(X), k = 0, 1, 
*.., without any additional computation (except for that involved in selecting n). 
If one is taking advantage of this fact, the Xk should be selected so that x- xk+1I > 

Ix - Xk , cf. [7, p. 50]. 
Algorithm II. 

Vo,o = f(xo) 

VO,k = f (Xk) '1 

k = 1, 2, *.*.* n 

Vi+l. 
V 

= -- i = 0 1* k - IJ 
Xi- Xk 

Vk-lk-1 = Vk-l,k-1 + (X - Xk-1) Vk,k k = n, n - 1, ***, 1 

pn(X) = VO 0. 

Hermite Interpolation. Equations (1) and (2) hold (see e.g., Steffensen [8]) for 
Xj = xj+l = * = xj+s provided one avoids division by zero in Eq. (2) and defines 
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(4) f[xj, xj, *,xj] = 1! dc|f s! dx s 
Xxjx 

where xj is repeated s + 1 times. To simplify the exposition we assume the data is 
given in the form 

k Xk Yk 

O 40 ao,O 

0 40 ao,l 

q0 00 ao,qf, 

q1 + 1 al0, 

qo+ql+ 1 41 al, 

q0+ ql + 2 a2,0 

where 
I dI f dx= - == 

In Algorithm III 

(6) Vik = Yk = f[r2 ,r7 * * * i = O 

= A~X0 X11 
.. 

* Xi-1y rj trj 
.. 

* * Ir i > 0 7 

where tr is repeated s + 1 times, and r and s are the subscripts of the a associated 
with Yk. 

Algorithm III. 

CrO = I 

po = Co 

Vok Yk 

Vi~l,k - 
i 

_-z ,i s - 
Xi 

- 
Xk i~~ = U. 1, .. k - I - .Si 

(If s _ k do nothing.) 
Vi+l k-1 - Vik I= 1, 2, *.*, t . 

Xi - Xk J 

Ck = Vks ,k, (k-1 = X - Xk-1, 

Irk = Wk-17rk-1 , pk (X) = pk-1 (X) + lrkCk 
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In the implementation of this algorithm Vo can be replaced by da. Algorithm II 
can be extended to do Hermite interpolation in a similar way. 

An Interpolating Function in C'. If n = 2m - 1 (m > 1), and the Xk are always 
selected so that m of them are on either side of x, then it is easy to construct an 
interpolating function which is composed of nth degree polynomials between 
tabular points and has a continuous first derivative where the polynomials are 
joined. 

Let the table be given by (ti, f(i)), i = 1, 2, *, N, with 4k < (k+l. Define 
Pn-(x) and P,9 l(x) as the polynomials passing through points with indices i = k - 

m + 1, k-m + 2, * * ., k + m-1 and i = k -m + 2, k-m + 3, * *k + m 
respectively, where tk _ X < (k+l. If x is so close to one end of the table that there 
are not m points on either side of x, then Pn&(x) = PnR 1(x) = the polynomial 
passing through the n points nearest that end of the table. It is easy to verify that 
the function 

(7) CCn(x) = Pnfl(x) + X _ (X) 
16k+1 (k 

has the desired properties. 
Let X2j = (k-j, X2j+l = 4+i+11 J = 0, 1, m - 1. With this labeling of the 

x's, Eq. (1) yields 

(8) Pni(X) - Pn1 (X) = (x - X)(X x) ... (x - Xn-2){If[Xo, I, X_21, Xn] 

- f[xo ... , xn-1]} 

and thus 

Cn(X) = Pn_-1 + (x - Xo) ... (x - Xn-2) - X) If[xo . I, Xn_2, Xn] 

XXi--Xn- (9) - f[xo,* *, is 

= Pni1 + (x - XO) ***(x - Xn2) (X -Xo) ffxf xi, *,n] Xi - XO 

If the Xk are selected as indicated above, then the function pn(x) defined by the 
following algorithm has a continuous first derivative. 

Algorithm IV. 

n = 2m - 1 if there are m points on both sides of x 

= 2m - 2 otherwise. 

Do everything as in Algorithm I, except replace Uk-1 = X - Xk-l in Algorithm I with 

WCk-1 = X - Xk1 if k < 2m - 1 

J Uk-1 = X - Xo 

= ~ if k = 2m- 1. 

|Vk, k = Vk, k( Xk-) 
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Numerical Differentiation. The algorithm for numerical differentiation is easily 
obtained by repeatedly differentiating Eq. (1). 

Algorithm V. Start by performing Algorithm I (or IV) with V,, replaced by c,. 
(Or if extra derivatives are available perform Algorithm III.) In any case save the 
lrk's and COk's, and then do the following 

Co = Pn(X) 

tri = ()k+i-1lri-1 + ri, k = 12 2, * n-1 ir~~~ ~ ~ i= &.~&~&i+is 11,2, *,n-1G 

Ck = Ck + IriCk+i, I ) (If n < 1 do nothing.) 
The Ck'5 give the coefficients of the interpolating polynomial expanded about x. 

(Of course, one need not compute all of them.) That is 
n 

(10) pn( ) = Eck(t - X)k 
k=O 

and 

(11) dp~(e) - =~ Pck 

d~k ~= 

Lyness and Moler [6] give a brief discussion of the errors in a process such as this, 
and point out that iterative refinement can be used to reduce the rounding error 
introduced by the algorithm. 

Comparison of Methods for Simple Interpolation. Table 1 gives the number of 
arithmetic operations required by the algorithms for simple polynomial interpola- 
tion. The computation in the Lagrangian case is assumed to be carried out according 
to the formula 

(n n f f(Xk) 
(12) Pn(X) = (II J EAkCOk 

i= O k= O kk 

where coi = x - xi and Ank = Hlj=0 (Xk- xj). (The prime indicates that the term 
with j = k is not included in the product.) Formula (12) is an efficient computa- 
tional form of Lagrange's formula. It has the drawback that exceptional cases may 
cause overflow or underflow. Lagrange's formula is most efficient if polynomial 
interpolation of fixed degree is to be performed on several components of a vector 
valued function. 

TABLE 1. Number of Operations Required to Compute pn(x) 

Number of 
Number of Number of Additions and 
Divisions Multiplications Subtractions 

Lagrange n + 1 (n + 1) (n + 2) (n + 1) (n + 2) 
Aitken or Neville*** in(n + 1) n(n + 1) (n + 1)2 
Algorithm I in(n + 1) 2n (n + 1)2 + n - 1 
Algorithm II in(n + 1) n (n + 1)2 + n-1 

*** See footnote on p. 190. 
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The arithmetic operations required by the interpolation algorithm are an in- 
creasingly less important factor in determining the efficiency of a subroutine. The 
optimal algorithm in a given case will depend on the value of n and programming 
considerations. For example, Algorithm I requires more multiplications than 
Algorithm II, but it has simpler indexing and gives the difference between successive 
approximations. 
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Po,o = Axo) 

wo = X - Xo 

Pk,o(X) = f(xk) 

Ok = X - Xk 

fCAP ii - iPk~i (Lagrange) k=1,2, n 
Xi -f Xk 

1,2 
0, 1, k 

Pki+l(x) = ) 

Pi,i + [Pii - Pki] (Newton) 

pn(X) = P.,n 


