
Efficient Algorithms for Polynomial Interpolation
and Numerical Differentiation*

By Fred T. Krogh

Abstract. Algorithms based on Newton's interpolation formula are given for: simple
polynomial interpolation, polynomial interpolation with derivatives supplied at some
of the data points, interpolation with piecewise polynomials having a continuous first
derivative, and numerical differentiation. These algorithms have all the advantages of
the corresponding algorithms based on Aitken-Neville interpolation, and are more
efficient.

Introduction. The polynomial of nth degree passing through the points (xi, f(xi)),
i = 0,1, * *, n, is given by the Newton interpolation formula

(1) Pn(X) = f [o] + wlf[xo, Xi] + w2f[xo, X1, X2] +

. . . + rnf [xo, Xii , * Xn]

where 7ri = (x - xo) (x - xi) * (x - xi-) andf[xo, xi, *, xi] is the ith divided
difference of f defined by**

f[Xk] = f (Xk)

f IX1 X1 =f[XO]
- fJ[Xkl

(2) f[xo, Xk] XO - k

f[Xo X1, , XI, Xi, - f[xki ? 1, Xi] -Af2xonxl? * Xi-,xk] i > 1.

Although Newton's interpolation formula is well known, it is not widely used due
to the popular misconception that it is inefficient. Usually recommended for
interpolation are the methods of Aitken [1], Neville [21, or Lagrange's formula.
Algorithms which make use of derivative values for interpolation are given in
[2], [3], and [4]; and algorithms for numerical differentiation are given in [3], [5],
and [6]. In all cases the algorithms given here are more efficient than other algo-
rithms in the literature.

Simple Interpolation. The algorithms given below follow naturally from Eqs.
(1) and (2). In these algorithms

Received February 12, 1968, revised June 25, 1969.
AMS Subject Classifications. Primary 6515, 6555.
Key Words and Phrases. Interpolation, numerical differentiation, Newton's interpolation

formula, Aitken interpolation, Neville interpolation, Lagrange interpolation, Hermite interpola-
tion, spline function.

* This work was done while the author was employed by TRW Systems.
** The recursion used in this definition gives the same results as obtained with the more usual

f1xo, xi, *-., Xk] = {fIxo, * -, xk - f[x , *--, xk]}/(xo - Xk). It has the minor advantages of
letting one save the divided differences used in Eq. (1) with no extra storage requirement, and of
giving indexes which do not decrease in the implementation of the algorithms (a convenience with
some FORTRAN compilers).

185

186 FRED T. KROGH

Vik= f (xk) i = O

=f [XO2 Xl, .. * *,al, Xk]I i-= 1, 2, .. *I* k,j

(3))k X Xk,

o= 1,

Irk = (X - Xo)(X - X1) (X -k-1) .

In the algorithms a statement of the form x = f(x, y, * * *) means compute f using
the numbers in locations x, y, ***, and store the result in location x.

Algorithm I.

T0 = 1

V0, 0 = f (xo)

Po = V0,0

Vo,k = f (Xk)

Vi~ - Vi,k i01**l- Vi+lk
Xi

- - Xk
i 01 11 * *

k= 1,2,*,n.

Wk-1 = X Xk-1 X

Irk = Wk-1rk-1

pk (X) = pk-1 (X) + IrkVk,k, J
Note that in a computer program the cox's, ir's, and p's can be scalars since in each
case they are only used immediately after being computed, and similarly the array
V can be replaced by a vector c with c, = Vu,.

An important feature of the Newton (or Aitken-Neville) algorithm is that one
can select the value of n based on the convergence of the sequence pk(X), k = 0, 1,
*.., without any additional computation (except for that involved in selecting n).
If one is taking advantage of this fact, the Xk should be selected so that x- xk+1I >

Ix - Xk , cf. [7, p. 50].
Algorithm II.

Vo,o = f(xo)

VO,k = f (Xk) '1

k = 1, 2, *.*.* n

Vi+l.
V

= -- i = 0 1* k - IJ
Xi- Xk

Vk-lk-1 = Vk-l,k-1 + (X - Xk-1) Vk,k k = n, n - 1, ***, 1

pn(X) = VO 0.

Hermite Interpolation. Equations (1) and (2) hold (see e.g., Steffensen [8]) for
Xj = xj+l = * = xj+s provided one avoids division by zero in Eq. (2) and defines

EFFICIENT ALGORITHMS 187

(4) f[xj, xj, *,xj] = 1! dc|f s! dx s
Xxjx

where xj is repeated s + 1 times. To simplify the exposition we assume the data is
given in the form

k Xk Yk

O 40 ao,O

0 40 ao,l

q0 00 ao,qf,

q1 + 1 al0,

qo+ql+ 1 41 al,

q0+ ql + 2 a2,0

where
I dI f dx= - ==

In Algorithm III

(6) Vik = Yk = f[r2 ,r7 * * * i = O

= A~X0 X11
..

* Xi-1y rj trj
..

* * Ir i > 0 7

where tr is repeated s + 1 times, and r and s are the subscripts of the a associated
with Yk.

Algorithm III.

CrO = I

po = Co

Vok Yk

Vi~l,k -
i

_-z ,i s -
Xi

-
Xk i~~ = U. 1, .. k - I - .Si

(If s _ k do nothing.)
Vi+l k-1 - Vik I= 1, 2, *.*, t .

Xi - Xk J

Ck = Vks ,k, (k-1 = X - Xk-1,

Irk = Wk-17rk-1 , pk (X) = pk-1 (X) + lrkCk

188 FRED T. KROGH

In the implementation of this algorithm Vo can be replaced by da. Algorithm II
can be extended to do Hermite interpolation in a similar way.

An Interpolating Function in C'. If n = 2m - 1 (m > 1), and the Xk are always
selected so that m of them are on either side of x, then it is easy to construct an
interpolating function which is composed of nth degree polynomials between
tabular points and has a continuous first derivative where the polynomials are
joined.

Let the table be given by (ti, f(i)), i = 1, 2, *, N, with 4k < (k+l. Define
Pn-(x) and P,9 l(x) as the polynomials passing through points with indices i = k -

m + 1, k-m + 2, * * ., k + m-1 and i = k -m + 2, k-m + 3, * *k + m
respectively, where tk _ X < (k+l. If x is so close to one end of the table that there
are not m points on either side of x, then Pn&(x) = PnR 1(x) = the polynomial
passing through the n points nearest that end of the table. It is easy to verify that
the function

(7) CCn(x) = Pnfl(x) + X _ (X)
16k+1 (k

has the desired properties.
Let X2j = (k-j, X2j+l = 4+i+11 J = 0, 1, m - 1. With this labeling of the

x's, Eq. (1) yields

(8) Pni(X) - Pn1 (X) = (x - X)(X x) ... (x - Xn-2){If[Xo, I, X_21, Xn]

- f[xo ... , xn-1]}

and thus

Cn(X) = Pn_-1 + (x - Xo) ... (x - Xn-2) - X) If[xo . I, Xn_2, Xn]

XXi--Xn- (9) - f[xo,* *, is

= Pni1 + (x - XO) ***(x - Xn2) (X -Xo) ffxf xi, *,n] Xi - XO

If the Xk are selected as indicated above, then the function pn(x) defined by the
following algorithm has a continuous first derivative.

Algorithm IV.

n = 2m - 1 if there are m points on both sides of x

= 2m - 2 otherwise.

Do everything as in Algorithm I, except replace Uk-1 = X - Xk-l in Algorithm I with

WCk-1 = X - Xk1 if k < 2m - 1

J Uk-1 = X - Xo

= ~ if k = 2m- 1.

|Vk, k = Vk, k(Xk-)

EFFICIENT ALGORITHMS 189

Numerical Differentiation. The algorithm for numerical differentiation is easily
obtained by repeatedly differentiating Eq. (1).

Algorithm V. Start by performing Algorithm I (or IV) with V,, replaced by c,.
(Or if extra derivatives are available perform Algorithm III.) In any case save the
lrk's and COk's, and then do the following

Co = Pn(X)

tri = ()k+i-1lri-1 + ri, k = 12 2, * n-1 ir~~~ ~ ~ i= &.~&~&i+is 11,2, *,n-1G

Ck = Ck + IriCk+i, I) (If n < 1 do nothing.)
The Ck'5 give the coefficients of the interpolating polynomial expanded about x.

(Of course, one need not compute all of them.) That is
n

(10) pn() = Eck(t - X)k
k=O

and

(11) dp~(e) - =~ Pck

d~k ~=

Lyness and Moler [6] give a brief discussion of the errors in a process such as this,
and point out that iterative refinement can be used to reduce the rounding error
introduced by the algorithm.

Comparison of Methods for Simple Interpolation. Table 1 gives the number of
arithmetic operations required by the algorithms for simple polynomial interpola-
tion. The computation in the Lagrangian case is assumed to be carried out according
to the formula

(n n f f(Xk)
(12) Pn(X) = (II J EAkCOk

i= O k= O kk

where coi = x - xi and Ank = Hlj=0 (Xk- xj). (The prime indicates that the term
with j = k is not included in the product.) Formula (12) is an efficient computa-
tional form of Lagrange's formula. It has the drawback that exceptional cases may
cause overflow or underflow. Lagrange's formula is most efficient if polynomial
interpolation of fixed degree is to be performed on several components of a vector
valued function.

TABLE 1. Number of Operations Required to Compute pn(x)

Number of
Number of Number of Additions and
Divisions Multiplications Subtractions

Lagrange n + 1 (n + 1) (n + 2) (n + 1) (n + 2)
Aitken or Neville*** in(n + 1) n(n + 1) (n + 1)2
Algorithm I in(n + 1) 2n (n + 1)2 + n - 1
Algorithm II in(n + 1) n (n + 1)2 + n-1

*** See footnote on p. 190.

190 FRED T. KROGH

The arithmetic operations required by the interpolation algorithm are an in-
creasingly less important factor in determining the efficiency of a subroutine. The
optimal algorithm in a given case will depend on the value of n and programming
considerations. For example, Algorithm I requires more multiplications than
Algorithm II, but it has simpler indexing and gives the difference between successive
approximations.

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91103

1. A. C. AITKEN, "On interpolation by iteration of proportional parts, without the use of
differences," Proc. Edinburgh Math. Soc., v. 3, 1932, pp. 56-76.

2. E. H. NEVILLE, "Iterative interpolation," J. Indian Math. Soc., v. 20, 1934, pp. 87-120.
3. M. GERSHINSKY & D. A. LEVINE, "Aitken-Hermite interpolation," J. Assoc. Comput.

Mach., v. 11, 1964, pp. 352-356. MR 29 ff2938.
4. A. C. R. NEWBERY, "Interpolation by algebraic and trigonometric polynomials," Math.

Comp., v. 20, 1966, pp. 597-599. MR 34 ff3752.
5. D. B. HUNTER, "An iterative method of numerical differentiation," Comput. J., v. 3,

1960/61, pp. 270-271. MR 22 ff8657.
6. J. N. LYNESS & C. B. MOLER, "Van Der Monde systems and numerical differentiation,"

Numer. Math., v. 8, 1966, pp. 458-464.
7. F. B. HILDEBRAND, Introduction to Numerical Analysis, McGraw-Hill, New York, 1956.

MR 17, 788.
8. J. F. STEFFENSEN, Interpolation, Chelsea, New York, 1950. MR 12, 164.
9. L. B. WINRICH, "Note on a comparison of evaluation schemes for the interpolating poly-

nomial," Comput. J., v. 12, 1969, pp. 154-155. (For comparison with the results given in Table 1
of this reference, our Algorithm II involves n(n + 1) subtractions and 1n(n + 1) divisions for
setup, and n additions, n subtractions, and n multiplications for each evaluation.)

*** This is for the usual procedure which is based on linear interpolation with Lagrange's
formula. The referee points out that if this interpolation is given in the form of Newton's formula,
the algorithm requires ,n(n ? 1) fewer multiplications and ,n(n + 1) more additions. At the
same time the round-off characteristics are improved. Thus for Aitken's algorithm.

Po,o = Axo)

wo = X - Xo

Pk,o(X) = f(xk)

Ok = X - Xk

fCAP ii - iPk~i (Lagrange) k=1,2, n
Xi -f Xk

1,2
0, 1, k

Pki+l(x) =)

Pi,i + [Pii - Pki] (Newton)

pn(X) = P.,n

